Skip to main content
The C++ standard libraries provide an extensive set of input/output capabilities which we will see in subsequent chapters. This chapter will discuss very basic and most common I/O operations required for C++ programming.
C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a device like a keyboard, a disk drive, or a network connection etc. to main memory, this is called input operation and if bytes flow from main memory to a device like a display screen, a printer, a disk drive, or a network connection, etc, this is called output operation.

I/O Library Header Files

There are following header files important to C++ programs:
Header FileFunction and Description
<iostream>This file defines the cin, cout, cerr and clog objects, which correspond to the standard input stream, the standard output stream, the un-buffered standard error stream and the buffered standard error stream, respectively.
<iomanip>This file declares services useful for performing formatted I/O with so-called parameterized stream manipulators, such as setw and setprecision.
<fstream>This file declares services for user-controlled file processing. We will discuss about it in detail in File and Stream related chapter.

The standard output stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be "connected to" the standard output device, which usually is the display screen. The cout is used in conjunction with the stream insertion operator, which is written as << which are two less than signs as shown in the following example.
#include <iostream>
 
using namespace std;
 
int main( ) {
   char str[] = "Hello C++";
 
   cout << "Value of str is : " << str << endl;
}
When the above code is compiled and executed, it produces the following result:
Value of str is : Hello C++
The C++ compiler also determines the data type of variable to be output and selects the appropriate stream insertion operator to display the value. The << operator is overloaded to output data items of built-in types integer, float, double, strings and pointer values.
The insertion operator << may be used more than once in a single statement as shown above and endl is used to add a new-line at the end of the line.

The standard input stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be attached to the standard input device, which usually is the keyboard. The cin is used in conjunction with the stream extraction operator, which is written as >> which are two greater than signs as shown in the following example.
#include <iostream>
 
using namespace std;
 
int main( ) {
   char name[50];
 
   cout << "Please enter your name: ";
   cin >> name;
   cout << "Your name is: " << name << endl;
 
}
When the above code is compiled and executed, it will prompt you to enter a name. You enter a value and then hit enter to see the result something as follows:
Please enter your name: cplusplus
Your name is: cplusplus
The C++ compiler also determines the data type of the entered value and selects the appropriate stream extraction operator to extract the value and store it in the given variables.
The stream extraction operator >> may be used more than once in a single statement. To request more than one datum you can use the following:
cin >> name >> age;
This will be equivalent to the following two statements:
cin >> name;
cin >> age;

The standard error stream (cerr)

The predefined object cerr is an instance of ostream class. The cerr object is said to be attached to the standard error device, which is also a display screen but the object cerr is un-buffered and each stream insertion to cerr causes its output to appear immediately.
The cerr is also used in conjunction with the stream insertion operator as shown in the following example.
#include <iostream>
 
using namespace std;
 
int main( ) {
   char str[] = "Unable to read....";
 
   cerr << "Error message : " << str << endl;
}
When the above code is compiled and executed, it produces the following result:
Error message : Unable to read....

The standard log stream (clog)

The predefined object clog is an instance of ostream class. The clog object is said to be attached to the standard error device, which is also a display screen but the object clog is buffered. This means that each insertion to clog could cause its output to be held in a buffer until the buffer is filled or until the buffer is flushed.
The clog is also used in conjunction with the stream insertion operator as shown in the following example.
#include <iostream>
 
using namespace std;
 
int main( ) {
   char str[] = "Unable to read....";
 
   clog << "Error message : " << str << endl;
}
When the above code is compiled and executed, it produces the following result:
Error message : Unable to read....
You would not be able to see any difference in cout, cerr and clog with these small examples, but while writing and executing big programs then difference becomes obvious. So this is good practice to display error messages using cerr stream and while displaying other log messages then clog should be used.

Comments

Popular posts from this blog

The Windows Firewall with Advanced Security is a firewall that runs on the Windows Server 2012 and is turned on by default. The Firewall settings within Windows Server 2012 are managed from within the  Windows Firewall Microsoft Management Console . To set Firewall settings perform the following steps − Step 1  − Click on the Server Manager from the task bar → Click the Tools menu and select Windows Firewall with Advanced Security. Step 2  − To see the current configuration settings by selecting  Windows Firewall Properties  from the MMC. This  allows access to modify the settings  for each of the three firewall profiles, which are –  Domain, Private and Public  and IPsec settings. Step 3  − Applying custom rules, which will include the following two steps − Select either  Inbound Rules  or  Outbound Rules  under  Windows Firewall with Advanced Security  on the left side of the management console...
In this chapter, we will see how to enable remote desktop application. It is important because this enables us to work remotely on the server. To do this, we have the following two options. For the first option, we have to follow the steps given below. Step 1  − Go to Start → right click “This PC” → Properties. Step 2  − On Left side click “Remote Setting”. Step 3  − Check radio button “Allow Remote connection to this computer” and Check box “Allow connection only from computers running Remote Desktop with Network Level Authentication (recommended)” → click “Select Users”. Step 4  − Click Add. Step 5  − Type user that you want to allow access. In my case, it is administrator → click OK. For the  second option , we need to follow the steps given below. Step 1  − Click on “Server Manage” → Local Server → click on “Enable” or Disable, if it is Disabled.
In this chapter, we will see how to configure WSUS and tune it. The following steps should be followed for configuring it. Step 1  − When you open it for the first time, you should do it by going to “Server Manager” → Tools → Windows Server Update Services, then a Configuration wizard will be opened and then click → Next. Step 2  − Click “Start Connecting” → Wait until the green bar is full and then → Next. Step 3  − Check the box for which the updates want to be taken, I did for English and then → Next. Step 4  − Check the box for all the products which you want to update. It is just for Microsoft products and it is recommended to include all the products related to Microsoft and then → Next. Step 5  − Choose the classification updated to be downloaded, if you have a very good internet speed, then check all the boxes, otherwise just check “Critical Updates”. Step 6  − Now we should schedule the updates which I will recommend to do it a...